organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Isopropyl-2-p-tolyloxy-5,6,7,8-tetrahydro-1-benzothieno[2,3-d]pyrimidin-4(3H)-one

Xiao-Hua Zeng,^a Shou-Heng Deng,^b* Yong-Nian Qu^c and Hong-Mei Wang^a

^aInstitute of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China, ^bCenter of Oncology, People's Hospital Affiliated with YunYang Medical College, Shi Yan 442000, People's Republic of China, and ^cDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China

Correspondence e-mail: dengshouheng@yahoo.cn

Received 13 April 2009; accepted 22 April 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.057; wR factor = 0.141; data-to-parameter ratio = 15.8.

In the title compound, C₂₀H₂₂N₂O₂S, the central thienopyrimidine ring system is essentially planar, with a maximum displacement of 0.023 (2) Å. The attached cyclohexene ring is disordered over two possible conformations, with an occupancy ratio of 0.776 (12):0.224 (12). Neither intermolecular hydrogen-bonding interactions nor π - π stacking interactions are present in the crystal structure. The molecular conformation and crystal packing are stabilized by three intramolecular $C-H\cdots O$ hydrogen bonds and two $C-H\cdots \pi$ interactions.

Related literature

For the biological activity of thienopyrimidin-4(3H)-one derivatives, see: De Laszlo et al. (1992a,b); Taguchi et al. (1993*a*,*b*); Walter (1999*a*,*b*,*c*,*d*); Walter & Zeun (2004); Ding et al. (2004); Santagati et al. (2003); Abbott GmbH Co KG (2004a, 2004b); Waehaelae et al. (2004a,b); Ford et al. (2004a,b); Duval et al. (2005). For a description of the Cambridge Structural Database, see: Allen (2002). For related structures, see: Xie et al. (2008); Xu et al. (2005); Zeng et al. (2005, 2006, 2007, 2008); Wang et al. (2006, 2007, 2008); Zheng et al. (2007).

V = 919.76 (8) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.10 \times 0.10 \text{ mm}$

6373 measured reflections

3920 independent reflections

3370 reflections with $I > 2\sigma(I)$

(1983),

 $\mu = 0.19 \text{ mm}^-$

T = 298 K

 $R_{\rm int} = 0.079$

Z = 2

Experimental

Crystal data

C20H22N2O2S $M_{r} = 354.47$ Monoclinic, P21 $a = 13.2367 (7) \text{\AA}$ b = 5.7493 (3) Å c = 13.4306 (7) Å $\beta = 115.858 (4)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

 $T_{\min} = 0.963, T_{\max} = 0.981$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters constrained
$wR(F^2) = 0.141$	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.01	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$
3920 reflections	Absolute structure: Flack (1983)
248 parameters	1702 Freidel pairs
16 restraints	Flack parameter: 0.16 (10)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$C13-H13C\cdots O2 C12-H12A\cdots O2 C11-H11\cdots O1 C12-H12C\cdots Cg1^{i} C12-H12C\cdots Cg2^{i} $	0.96 0.96 0.98 0.96 0.96	2.41 2.31 2.20 2.94 2.72	2.959 (4) 2.871 (4) 2.725 (3) 3.838 (4) 3.413 (4)	116 117 112 156 130
012 11120 0.82	0.90	2.72	5.115 (1)	100

Symmetry code: (i) x, y - 1, z. Cg1 and Cg2 are the centroids of the thiophene (S1/C1/ C6-C8) and pyrimidine (N1/N2/C7-C10) rings, respectively.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

We gratefully acknowledge financial support of this work by the Education Commission of Hubei Province of China (grant Nos. B200624004, B20092412), Shiyan Municipal Science and Technology Bureau (grant No. 20061835) and Yunyang Medical College (grant Nos. 2007QDJ15, 2007ZQB19, 2007ZQB20).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2765).

References

- Abbott GmbH & Co. KG (2004a). Chem. Abstr. 141, 89095.
- Abbott GmbH & Co. KG (2004b). German Patent 10259382.
- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- De Laszlo, S. E., Patchett, A. A., Allen, E. E. & Greenlee, W. J. (1992a). Chem. Abstr. 118, 22249v.
- De Laszlo, S. E., Patchett, A. A., Allen, E. E. & Greenlee, W. J. (1992b). European Patent 502 725.
- Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.
- Duval, E., Case, A., Stein, R. L. & Cuny, G. D. (2005). Bioorg. Med. Chem. Lett. 15, 1885–1889.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ford, J., Palmer, N. J., Atherall, J. F., Madge, D. J., Sherborne, B., Bushfield, M. & Stevens, E. B. (2004a). Chem. Abstr. 142, 74599.
- Ford, J., Palmer, N. J., Atherall, J. F., Madge, D. J., Sherborne, B., Bushfield, M. & Stevens, E. B. (2004b). World Patent 2004111057.
- Santagati, A., Marrazzo, A. & Granata, G. (2003). J. Heterocycl. Chem. 40, 869–873.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Taguchi, M., Ota, T. & Hatayama, K. (1993a). Chem. Abstr. 119, 160309m.
- Taguchi, M., Ota, T. & Hatayama, K. (1993b). World Patent 9303040.
- Waehaelae, K., Lilienkampf, A., Alho, S., Huhtinen, K., Johansson, N., Koskimies, P. & Vihko, K. (2004a). Chem. Abstr. 142, 74590.
- Waehaelae, K., Lilienkampf, A., Alho, S., Huhtinen, K., Johansson, N., Koskimies, P. & Vihko, K. (2004b). World Patent 2004110 459.
- Walter, H. (1999a). Chem. Abstr. 130, 237580e.
- Walter, H. (1999b). World Patent 9911631.
- Walter, H. (1999c). Chem. Abstr. 130, 252368k.
- Walter, H. (1999*d*). World Patent 9914202.
- Walter, H. & Zeun, R. (2004). Chimia, 57, 692-696.
- Wang, H.-M., Chen, L.-L., Hu, T. & Zeng, X.-H. (2008). Acta Cryst. E64, 02404.
- Wang, H.-M., Zeng, X.-H., Hu, Z.-Q., Li, G.-H. & Tian, J.-H. (2006). Acta Cryst. E62, o5038–o5040.
- Wang, H.-M., Zeng, X.-H., Zheng, A.-H., Tian, J.-H. & He, T.-Y. (2007). Acta Cryst. E63, 04365.
- Xie, H., Meng, S.-M., Fan, Y.-Q. & Guo, Y. (2008). Acta Cryst. E64, o2434.
- Xu, S.-Z., Cao, M.-H., Hu, Y.-G., Ding, M.-W. & Xiao, W.-J. (2005). Acta Cryst. E61, 02789–02790.
- Zeng, X.-H., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, 0731-0732.
- Zeng, G., Li, Q. & Hu, Y. (2008). Acta Cryst. E64, 0535.
- Zeng, X.-H., Wang, H.-M., Luo, Z.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, 04160–04161.
- Zeng, X.-H., Zhao, L.-H., Luo, H. & Long, J.-Y. (2007). Acta Cryst. E63, 03004. Zheng, A.-H., Long, J.-Y., Zeng, X.-H. & Wang, H.-M. (2007). Acta Cryst. E63, 01142–01144.

Acta Cryst. (2009). E65, o1142-o1143 [doi:10.1107/S1600536809014962]

3-Isopropyl-2-p-tolyloxy-5,6,7,8-tetrahydro-1-benzothieno[2,3-d]pyrimidin-4(3H)-one

X.-H. Zeng, S.-H. Deng, Y.-N. Qu and H.-M. Wang

Comment

The derivatives of heterocycles containing thienopyrimidine system, which are well known bioisosteres of quinazolines, are of great importance because of their remarkable biological properties. Some of these activities include antimicrobial or antifungal activities (De Laszlo *et al.*, 1992*a,b*; Walter, 1999*a,b,c,d*); Ding *et al.*, 2004; Walter *et al.*, 2004), significant 5-HT_{1A} and 5-HT_{1B} receptor activities (Taguchi *et al.*, 1993*a,b*; Abbott GmbH & Co. KG., 2004*a,b*), potential selective COX-2 enzyme inhibitor activity (Santagati *et al.*, 2003), 17beta-hydroxysteroid dehydrogenase inhibitor activity (Waehaelae *et al.*, 2004*a,b*), potassium channel inhibitor activity (Ford *et al.*, 2004*a,b*), and tissue transglutaminase inhibitor activity (Duval *et al.*, 2005).

In recent years, we have been engaged in the preparation of the derivatives of heterocycles *via* aza-Wittig reaction. The title compound, (I), was synthesized and structurally characterized in this context.

The molecular structure indicates that the thieno[2,3-*d*]pyrimidine molecular structure indicates the the the thieno[2,3-*d*]pyrimidine molecular structure indicates the the thet

The attached cyclohexene ring is disordered. There are two possible conformations, C2—C5 and C2/C3'/C4'/C5, with an occupancy ratio of 0.77:0.23. There exists no intermolecular hydrogen bonding interaction and no π - π stacking. The molecular conformation and crystal packing are stabilized by three intramolecular C—H···O hydrogen bonds and two C—H··· π interactions.

Experimental

To a solution of iminophosphorane (1.45 g, 3 mmol) in anhydrous dichloromethane (15 ml) was added iso-propyl isocyanate (3 mmol) under dry nitrogen at room temperature. After the reaction mixture was left unstirred for 48 h at room temperature, the solvent was removed off under reduced pressure and ether/petroleum ether (1:2 ν/ν , 20 ml) was added to precipitate triphenylphosphine oxide. After filtration, the solvent was removed, and the residue was dissolved in CH₃CN (15 ml). After adding 4-CH₃—PhOH (3.1 mmol) and excess K₂CO₃ to the solution of carbodiimide, the mixture was stirred for 15 h at room temperature. The solution was condensed and the residue was recrystallized by EtOH to give the title compound, (I), in yield of 65% (m.p. 436 K). Elemental analysis calculated for C₂₀H₂₂N₂O₂S: C 67.77, H 6.26, N 7.90%. Found: C 67.54, H 6.32, N 7.83%. Crystals suitable for single crystal X-ray diffraction were obtained by vapor diffusion of hexane and dichloromethane (1:3 ν/ν) at room temperature.

Refinement

H atoms were placed at calculated positions and treated as riding atoms, with C—H = 0.93–0.98 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$.

Figures

Fig. 1. View of the molecule of showing the atom-labeling scheme. Displacement ellipsoids are drawn at 50% probability level. H-atoms are represented by circles of arbitrary size. Only the major component of the disordered cyclohexene ring is shown.

3-Isopropyl-2-p-tolyloxy-5,6,7,8-tetrahydro-1- benzothieno[2,3-d]pyrimidin-4(3H)-one

Crystal data	
$C_{20}H_{22}N_2O_2S$	$F_{000} = 376$
$M_r = 354.47$	$D_{\rm x} = 1.280 {\rm ~Mg~m}^{-3}$
Monoclinic, P2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 2048 reflections
a = 13.2367 (7) Å	$\theta = 2.9 - 24.5^{\circ}$
<i>b</i> = 5.7493 (3) Å	$\mu = 0.19 \text{ mm}^{-1}$
c = 13.4306 (7) Å	<i>T</i> = 298 K
$\beta = 115.858 \ (4)^{\circ}$	Block, colourless
$V = 919.76 (8) \text{ Å}^3$	$0.20\times0.10\times0.10~mm$
Z = 2	

Data collection

Bruker SMART CCD area-detector diffractometer	3920 independent reflections
Radiation source: fine-focus sealed tube	3370 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.079$
T = 298 K	$\theta_{\text{max}} = 27.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -16 \rightarrow 16$
$T_{\min} = 0.963, T_{\max} = 0.981$	$k = -7 \rightarrow 7$
6373 measured reflections	$l = -17 \rightarrow 15$

Refinement

Refinement on F^2

Hydrogen site location: inferred from neighbouring sites

Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.057$	$w = 1/[\sigma^2(F_o^2) + (0.0798P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.141$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
3920 reflections	$\Delta \rho_{min} = -0.32 \text{ e} \text{ Å}^{-3}$
248 parameters	Extinction correction: none
16 restraints	Absolute structure: Flack (1983), 1702 Freidel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.16 (10)
Secondary atom site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	0.20878 (19)	0.6656 (5)	0.88050 (19)	0.0448 (6)	
C2	0.0948 (2)	0.6877 (6)	0.8794 (2)	0.0563 (7)	
H2A	0.0446	0.7700	0.8132	0.068*	0.776 (12)
H2B	0.0639	0.5339	0.8776	0.068*	0.776 (12)
H2C	0.0817	0.5593	0.9191	0.068*	0.224 (12)
H2D	0.0370	0.6849	0.8037	0.068*	0.224 (12)
C3	0.1018 (4)	0.8162 (11)	0.9796 (5)	0.0662 (16)	0.776 (12)
H3A	0.1348	0.7157	1.0439	0.079*	0.776 (12)
H3B	0.0268	0.8576	0.9693	0.079*	0.776 (12)
C4	0.1717 (4)	1.0336 (10)	0.9996 (6)	0.0690 (17)	0.776 (12)
H4A	0.1703	1.1175	1.0616	0.083*	0.776 (12)
H4B	0.1383	1.1329	0.9349	0.083*	0.776 (12)
C3'	0.0904 (12)	0.916 (2)	0.9334 (14)	0.061 (5)	0.224 (12)
H3'1	0.0829	1.0405	0.8817	0.073*	0.224 (12)
H3'2	0.0230	0.9169	0.9448	0.073*	0.224 (12)
C4'	0.1882 (9)	0.974 (5)	1.0420 (11)	0.068 (6)	0.224 (12)
H4'1	0.1965	0.8556	1.0964	0.081*	0.224 (12)
H4'2	0.1758	1.1224	1.0692	0.081*	0.224 (12)
C5	0.2932 (2)	0.9853 (6)	1.0236 (3)	0.0615 (8)	
H5A	0.3283	1.1265	1.0144	0.074*	0.776 (12)
H5B	0.3346	0.9322	1.0993	0.074*	0.776 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H5C	0.2996	1.1376	0.9958	0.074*	0.224 (12)
H5D	0.3578	0.9636	1.0943	0.074*	0.224 (12)
C6	0.2953 (2)	0.8022 (5)	0.9451 (2)	0.0489 (6)	
C7	0.3471 (2)	0.5369 (5)	0.8298 (2)	0.0457 (6)	
C8	0.23832 (18)	0.5102 (5)	0.81357 (19)	0.0419 (5)	
С9	0.1665 (2)	0.3547 (5)	0.7278 (2)	0.0440 (5)	
C10	0.33155 (19)	0.2882 (5)	0.6970 (2)	0.0472 (6)	
C11	0.1476 (2)	0.1089 (5)	0.5680 (2)	0.0476 (6)	
H11	0.0727	0.1104	0.5658	0.057*	
C12	0.1818 (3)	-0.1432 (6)	0.5773 (3)	0.0763 (10)	
H12A	0.2536	-0.1556	0.5760	0.114*	
H12B	0.1269	-0.2287	0.5163	0.114*	
H12C	0.1867	-0.2060	0.6455	0.114*	
C13	0.1348 (3)	0.2214 (6)	0.4619 (2)	0.0640 (8)	
H13A	0.1085	0.3781	0.4587	0.096*	
H13B	0.0817	0.1349	0.4001	0.096*	
H13C	0.2061	0.2229	0.4591	0.096*	
C14	0.4833 (2)	0.1798 (5)	0.6585 (2)	0.0515 (7)	
C15	0.5521 (3)	0.0051 (7)	0.7178 (3)	0.0704 (9)	
H15	0.5252	-0.1141	0.7466	0.084*	
C16	0.6628 (3)	0.0076 (7)	0.7348 (3)	0.0743 (9)	
H16	0.7098	-0.1137	0.7741	0.089*	
C17	0.7055 (2)	0.1829 (6)	0.6956 (2)	0.0592 (8)	
C18	0.6321 (3)	0.3536 (7)	0.6344 (3)	0.0721 (9)	
H18	0.6583	0.4727	0.6050	0.086*	
C19	0.5207 (3)	0.3543 (6)	0.6149 (3)	0.0710 (9)	
H19	0.4724	0.4715	0.5730	0.085*	
C20	0.8275 (2)	0.1872 (10)	0.7183 (3)	0.0936 (15)	
H20A	0.8639	0.3178	0.7646	0.140*	
H20B	0.8332	0.2006	0.6496	0.140*	
H20C	0.8632	0.0460	0.7549	0.140*	
N1	0.22102 (15)	0.2496 (4)	0.66777 (15)	0.0435 (4)	
N2	0.39874 (17)	0.4226 (4)	0.77485 (19)	0.0524 (6)	
02	0.36853 (15)	0.1676 (4)	0.63340 (17)	0.0689 (7)	
01	0.06852 (14)	0.3137 (4)	0.70296 (16)	0.0607 (6)	
S1	0.41623 (5)	0.74703 (15)	0.92707 (6)	0.0585 (2)	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0409 (13)	0.0542 (15)	0.0392 (12)	0.0072 (10)	0.0172 (10)	0.0072 (11)
C2	0.0453 (14)	0.068 (2)	0.0600 (16)	0.0029 (12)	0.0267 (12)	-0.0012 (14)
C3	0.062 (3)	0.086 (4)	0.062 (3)	-0.003 (2)	0.038 (2)	-0.010 (3)
C4	0.075 (3)	0.074 (4)	0.070 (4)	0.005 (2)	0.042 (3)	-0.014 (3)
C3'	0.053 (7)	0.072 (8)	0.060 (8)	0.002 (6)	0.026 (6)	0.000 (6)
C4'	0.075 (9)	0.081 (10)	0.056 (9)	0.012 (6)	0.036 (7)	0.012 (7)
C5	0.0554 (16)	0.071 (2)	0.0553 (16)	0.0041 (14)	0.0213 (13)	-0.0128 (15)
C6	0.0409 (12)	0.0616 (17)	0.0410 (12)	0.0051 (11)	0.0149 (10)	-0.0014 (12)

C7	0.0371 (13)	0.0556 (15)	0.0383 (12)	0.0036 (11)	0.0107 (10)	-0.0022 (11)
C8	0.0347 (11)	0.0508 (13)	0.0373 (12)	0.0014 (10)	0.0130 (10)	0.0026 (10)
C9	0.0369 (12)	0.0502 (14)	0.0449 (13)	0.0016 (10)	0.0179 (10)	0.0058 (11)
C10	0.0360 (11)	0.0563 (16)	0.0490 (13)	0.0013 (11)	0.0182 (10)	-0.0032 (12)
C11	0.0381 (13)	0.0495 (15)	0.0485 (14)	-0.0052 (11)	0.0127 (11)	-0.0059 (12)
C12	0.095 (3)	0.0463 (17)	0.072 (2)	-0.0096 (16)	0.0220 (19)	0.0016 (16)
C13	0.0728 (18)	0.0565 (18)	0.0483 (15)	0.0039 (15)	0.0130 (13)	-0.0016 (14)
C14	0.0381 (13)	0.0631 (18)	0.0561 (15)	-0.0044 (11)	0.0232 (12)	-0.0184 (13)
C15	0.0602 (18)	0.075 (2)	0.082 (2)	-0.0034 (17)	0.0366 (17)	0.0130 (19)
C16	0.0570 (18)	0.083 (2)	0.077 (2)	0.0165 (17)	0.0243 (16)	0.0157 (19)
C17	0.0473 (14)	0.085 (2)	0.0514 (15)	-0.0026 (14)	0.0276 (12)	-0.0128 (15)
C18	0.0622 (19)	0.085 (2)	0.076 (2)	-0.0121 (18)	0.0372 (17)	0.0070 (18)
C19	0.0608 (18)	0.067 (2)	0.083 (2)	0.0070 (16)	0.0292 (17)	0.0075 (18)
C20	0.0496 (17)	0.166 (5)	0.073 (2)	0.002 (2)	0.0332 (16)	-0.020 (3)
N1	0.0338 (9)	0.0498 (11)	0.0439 (10)	-0.0019 (10)	0.0143 (8)	-0.0033 (10)
N2	0.0319 (10)	0.0662 (15)	0.0566 (13)	-0.0020 (10)	0.0169 (9)	-0.0152 (11)
O2	0.0398 (10)	0.0937 (17)	0.0744 (13)	-0.0097 (10)	0.0261 (9)	-0.0374 (12)
01	0.0361 (9)	0.0808 (15)	0.0670 (11)	-0.0103 (9)	0.0242 (8)	-0.0142 (11)
S1	0.0359 (3)	0.0722 (5)	0.0603 (4)	-0.0040 (3)	0.0144 (3)	-0.0216 (4)

Geometric parameters (Å, °)

C1—C6	1.347 (4)	С9—О1	1.213 (3)
C1—C8	1.437 (4)	C9—N1	1.429 (3)
C1—C2	1.508 (3)	C10—N2	1.292 (3)
C2—C3	1.502 (5)	C10—O2	1.348 (3)
C2—C3'	1.515 (10)	C10—N1	1.358 (3)
C2—H2A	0.9700	C11—N1	1.503 (3)
C2—H2B	0.9700	C11—C13	1.506 (4)
C2—H2C	0.9700	C11—C12	1.508 (5)
C2—H2D	0.9700	C11—H11	0.9800
C3—C4	1.508 (7)	C12—H12A	0.9600
С3—НЗА	0.9700	C12—H12B	0.9600
С3—Н3В	0.9700	C12—H12C	0.9600
C4—C5	1.521 (5)	C13—H13A	0.9600
C4—H4A	0.9700	С13—Н13В	0.9600
C4—H4B	0.9700	C13—H13C	0.9600
C3'—C4'	1.505 (10)	C14—C15	1.356 (5)
C3'—H3'1	0.9700	C14—C19	1.359 (4)
C3'—H3'2	0.9700	C14—O2	1.407 (3)
C4'—C5	1.515 (9)	C15—C16	1.382 (4)
C4'—H4'1	0.9700	C15—H15	0.9300
C4'—H4'2	0.9700	C16—C17	1.368 (5)
C5—C6	1.499 (4)	С16—Н16	0.9300
С5—Н5А	0.9700	C17—C18	1.373 (5)
С5—Н5В	0.9700	C17—C20	1.508 (4)
С5—Н5С	0.9700	C18—C19	1.381 (4)
C5—H5D	0.9700	C18—H18	0.9300
C6—S1	1.749 (3)	С19—Н19	0.9300

С7—С8	1.368 (3)	C20—H20A	0.9600
C7—N2	1.372 (3)	C20—H20B	0.9600
C7—S1	1.721 (3)	С20—Н20С	0.9600
C8—C9	1.440 (4)		
C6—C1—C8	112.2 (2)	H5A—C5—H5D	88.0
C6—C1—C2	121.6 (2)	H5B—C5—H5D	23.0
C8—C1—C2	126.2 (2)	H5C—C5—H5D	107.8
C3—C2—C1	111.2 (3)	C1—C6—C5	126.2 (2)
C3—C2—C3'	31.2 (6)	C1—C6—S1	112.19 (19)
C1—C2—C3'	108.4 (7)	C5—C6—S1	121.6 (2)
C3—C2—H2A	109.4	C8—C7—N2	126.7 (2)
C1—C2—H2A	109.4	C8—C7—S1	111.93 (19)
C3'—C2—H2A	82.1	N2—C7—S1	121.34 (18)
C3—C2—H2B	109.4	C7—C8—C1	112.7 (2)
C1—C2—H2B	109.4	C7—C8—C9	118.6 (2)
С3'—С2—Н2В	134.4	C1—C8—C9	128.4 (2)
H2A—C2—H2B	108.0	O1—C9—N1	120.3 (2)
C3—C2—H2C	80.7	01—C9—C8	126.4 (2)
C1—C2—H2C	110.4	N1—C9—C8	113.2 (2)
C3'—C2—H2C	110.1	N2—C10—O2	120.6 (2)
H2A—C2—H2C	131.4	N2—C10—N1	127.4 (2)
H2B—C2—H2C	31.3	O2—C10—N1	112.1 (2)
C3—C2—H2D	131.3	N1—C11—C13	112.0 (2)
C1—C2—H2D	109.7	N1—C11—C12	112.9 (2)
C3'—C2—H2D	109.9	C13—C11—C12	113.4 (3)
H2A - C2 - H2D	30.2	N1-C11-H11	105.9
H2B-C2-H2D	80.0	C13—C11—H11	105.9
H2C-C2-H2D	108.4	C12—C11—H11	105.9
$C_2 - C_3 - C_4$	111.1.(5)	C11—C12—H12A	109.5
C2—C3—H3A	109.4	C11—C12—H12B	109.5
C4—C3—H3A	109.4	H12A—C12—H12B	109.5
C2—C3—H3B	109.4	C11—C12—H12C	109.5
C4—C3—H3B	109.4	H12A— $C12$ — $H12C$	109.5
H_{3A} C_{3} H_{3B}	108.0	H12B-C12-H12C	109.5
$C_{3} - C_{4} - C_{5}$	113 3 (4)	C11—C13—H13A	109.5
C3—C4—H4A	108.9	C11—C13—H13B	109.5
$C_5 - C_4 - H_4 A$	108.9	H13A—C13—H13B	109.5
C3 - C4 - H4B	108.9	C11—C13—H13C	109.5
$C_5 - C_4 - H_4 B$	108.9	H13A - C13 - H13C	109.5
H4A - C4 - H4B	107.7	H13B-C13-H13C	109.5
C4'-C3'-C2	117 3 (15)	C15-C14-C19	121.5(3)
C4'-C3'-H3'1	108.0	C15-C14-O2	121.3(3)
$C^2 - C^3' - H^{3'1}$	108.0	C19 - C14 - O2	110.0(3) 1194(3)
C4'-C3'-H3'2	108.0	C_{14} C_{15} C_{16}	118.8 (3)
$C^2 - C^3' - H^{3/2}$	108.0	C14-C15-H15	120.6
$H_{3'1} - C_{3'} - H_{3'2}$	107.2	C16—C15—H15	120.6
C3'-C4'-C5	108.3 (10)	C17 - C16 - C15	120.0 122.0(3)
C3'-C4'-H4'1	110.0	C17-C16-H16	119.0
$C_{5} = C_{4} = H_{4}$	110.0	C15_C16_H16	119.0
	110.0		117.0

C3'—C4'—H4'2	110.0	C16—C17—C18	117.0 (3)
C5—C4'—H4'2	110.0	C16—C17—C20	121.3 (3)
H4'1—C4'—H4'2	108.4	C18—C17—C20	121.6 (3)
C6—C5—C4'	112.6 (9)	C17—C18—C19	122.2 (3)
C6—C5—C4	108.8 (3)	C17—C18—H18	118.9
C4'—C5—C4	23.5 (6)	C19-C18-H18	118.9
С6—С5—Н5А	109.9	C14—C19—C18	118.4 (3)
C4'—C5—H5A	125.5	С14—С19—Н19	120.8
С4—С5—Н5А	109.9	С18—С19—Н19	120.8
С6—С5—Н5В	109.9	C17—C20—H20A	109.5
C4'—C5—H5B	87.4	С17—С20—Н20В	109.5
C4—C5—H5B	109.9	H20A—C20—H20B	109.5
H5A—C5—H5B	108.3	С17—С20—Н20С	109.5
С6—С5—Н5С	109.4	H20A—C20—H20C	109.5
C4'—C5—H5C	110.0	H20B-C20-H20C	109.5
C4—C5—H5C	90.9	C10—N1—C9	120.8 (2)
H5A—C5—H5C	21.3	C10—N1—C11	122.9 (2)
H5B—C5—H5C	125.7	C9—N1—C11	116.21 (18)
C6—C5—H5D	108.6	C10—N2—C7	113.1 (2)
C4'—C5—H5D	108.3	C10—O2—C14	118.4 (2)
C4—C5—H5D	129.0	C7—S1—C6	90.97 (12)
C6—C1—C2—C3	-17.9 (5)	C19—C14—C15—C16	0.6 (5)
C8—C1—C2—C3	164.4 (4)	O2—C14—C15—C16	174.8 (3)
C6—C1—C2—C3'	15.2 (8)	C14—C15—C16—C17	1.4 (5)
C8—C1—C2—C3'	-162.5 (8)	C15-C16-C17-C18	-2.5 (5)
C1—C2—C3—C4	46.7 (6)	C15-C16-C17-C20	177.8 (3)
C3'—C2—C3—C4	-44.0 (11)	C16—C17—C18—C19	1.7 (5)
C2—C3—C4—C5	-62.5 (8)	C20—C17—C18—C19	-178.6 (3)
C3—C2—C3'—C4'	53.3 (13)	C15—C14—C19—C18	-1.4 (5)
C1—C2—C3'—C4'	-47.5 (19)	O2-C14-C19-C18	-175.5 (3)
C2—C3'—C4'—C5	61 (3)	C17—C18—C19—C14	0.2 (5)
C3'—C4'—C5—C6	-39 (2)	N2—C10—N1—C9	-2.7 (4)
C3'—C4'—C5—C4	46.5 (12)	O2—C10—N1—C9	177.7 (2)
C3—C4—C5—C6	43.0 (7)	N2-C10-N1-C11	173.4 (3)
C3—C4—C5—C4'	-61 (2)	O2-C10-N1-C11	-6.3 (4)
C8—C1—C6—C5	179.2 (3)	O1—C9—N1—C10	-177.9 (3)
C2—C1—C6—C5	1.2 (4)	C8—C9—N1—C10	3.8 (3)
C8—C1—C6—S1	0.0 (3)	01—C9—N1—C11	5.8 (4)
C2—C1—C6—S1	-178.0 (2)	C8—C9—N1—C11	-172.6 (2)
C4'—C5—C6—C1	11.4 (9)	C13-C11-N1-C10	-64.3 (3)
C4—C5—C6—C1	-13.4 (5)	C12-C11-N1-C10	65.2 (3)
C4'—C5—C6—S1	-169.5 (9)	C13—C11—N1—C9	112.0 (3)
C4—C5—C6—S1	165.8 (3)	C12—C11—N1—C9	-118.6 (3)
N2—C7—C8—C1	-176.8 (3)	O2—C10—N2—C7	178.4 (3)
S1—C7—C8—C1	0.7 (3)	N1—C10—N2—C7	-1.2 (4)
N2—C7—C8—C9	-2.7 (4)	C8—C7—N2—C10	4.0 (4)
S1—C7—C8—C9	174.81 (19)	S1—C7—N2—C10	-173.3 (2)
C6—C1—C8—C7	-0.4 (3)	N2—C10—O2—C14	4.1 (4)
C2—C1—C8—C7	177.4 (2)	N1—C10—O2—C14	-176.3 (2)

C6—C1—C8—C9	-173.8 (2)	C15—C14—O2—C10	98.6 (3)
C2—C1—C8—C9	4.1 (4)	C19—C14—O2—C10	-87.0 (3)
C7—C8—C9—O1	-179.5 (3)	C8—C7—S1—C6	-0.6 (2)
C1—C8—C9—O1	-6.5 (4)	N2—C7—S1—C6	177.0 (2)
C7—C8—C9—N1	-1.3 (3)	C1—C6—S1—C7	0.4 (2)
C1C8C9N1	171.7 (2)	C5—C6—S1—C7	-178.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C13—H13C···O2	0.96	2.41	2.959 (4)	116
C12—H12A…O2	0.96	2.31	2.871 (4)	117
C11—H11…O1	0.98	2.20	2.725 (3)	112
C12—H12C···Cg1 ⁱ	0.96	2.94	3.838 (4)	156
C12—H12C···Cg2 ⁱ	0.96	2.72	3.413 (4)	130
Symmetry codes: (i) $x, y=1, z$.				

Fig. 1